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Introduction

Introduction

e Focus: singular value decomposition (SVD)

X=U-%-V+U,-%,-

_Th |

e Due to perturbation,

X=X+2,
SVD is altered to

A A

X:U-ﬁl~\7T+ J_-iz-VI.

T
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Introduction

Introduction

small perturbation + large signal — close V to V (or U and U)

VS. VS.

¢ Problem: Perturbation Bounds on Singular Subspaces

» How to quantify the difference between ¥ and V (or {/ and U)?
> |s there any upper bounds for the difference?
» Are U and U, V and V equally different?

e Motivation: spectral method, which has been used in a wide range
of modern high-dimensional statistical problems, utilize this property.
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Introduction

Application 1: Low-rank Matrix Denoising

X=X+2,

X is approximately rank-r, Z i sub-Gaussian(0, %)

e Target: X, U or V.
e Specific applications
» Magnetic Resonance Imaging (MRI) (Candés, Sing-Long and Trzasko,

2012);
> Relaxometry (Bydder and Du, 2006)

e Natural estimators for U, V: U, V, the first r singular vectors of X.
e Q: How do U, V perform, respectively?
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Introduction

Application 2: High-dimensional Clustering

e Observe n points Xi,..., X, eR’,p > n.
e Each point belongs to one of two classes (Jin, Ke and Wang, 2015)

iid

X;=uli+e&eRP, i=1,...,n, & ~ sub-Gaussian(0,c>l,),

l; € {-1,1} are labels; u € R” is the mean.

e Goal: recover labels /.
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Other Applications

¢ In addition, spectral method is often applied to find a “warm start” for
more delicate iterative algorithms.
» phase retrieval (Cai, Li and Ma, 2016)
» matrix completion (Sun and Luo, 2015)
» community detection (Jin, 2015)
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Other Applications

Other applications of spectral methods include

community detection

matrix completion

principle component analysis

canonical correlation analysis

Specific practices include

collaborative filtering (the Netflix problem)

multi-task learning

system identification
sensor localization
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Perturbation Bounds for Singular Subspaces

Problem Formulation

X=U-%-V+U, -%,-V]

e Target:

Measure the difference between ¥ and V (U and U)
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Perturbation Bounds for Singular Subspaces

sin ® Distance of Singular Sub-spaces

Definition of sin ® distances:
e Suppose VTV have singular values oy > 05 > --- > 0, > 0.
¢ Define the sine principle angles as

sin@(V, V) = diag(4/1 - 02,..., y/1 = oD).

 Quantitative measure of distance: ||sin ®(V, V)|| and || sin ®(V, V)||r.

Good properties:
e Triangular inequality — indeed a distance;
e Many other distances are equivalent — convenient to use.
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Perturbation Bounds for Singular Subspaces

Classic Resulis of Perturbation Bounds

e The Perturbation bounds: develop the upper bound for
Isin®V, VI, NIsin®U, DI, Nsin®V, Vir, |Isin®U, D).

e This problem has been widely studied in the literature (Davis and
Kahan, 1970; Wedin, 1972; Weyl, 1912; Stewart, 1991, 2006; Yu et
al., 2015; Fan, Wang and Zhong, 2016).

e Classical tools:

» Davis and Kahan (1970): eigenvectors of symmetric matrices;
» Wedin (1972): singular vectors for asymmetric matrices.
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Perturbation Bounds for Singular Subspaces

Classic Result: Wedin’s sin ® Theorem
X=U-21-VT+UL-22-VI
X=0-2,-VT+0,.% V]

Wedin’s sin ® Theorem (1972) states that if o'min(X1) — 0max(Z2) = 6 > 0,

max {|IZV], |07z}
: .

max {|| sin @(V, V)|, || sin ©(U, D)} <

e joint upper bound for both / and V;
e may be sub-optimal.

Figure: Intuitively, estimating V is more difficult than U for the matrix above.
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Perturbation Bounds for Singular Subspaces

Unilateral Perturbation Bound

e Decompose

Zo Zm||V]
Zu=U"2V, 7, =U,ZV", Z»,=U"2ZV,, Z»n=U,ZV,.

oty 27}

Define z;; := |1Z;|l for i, j=1,2.

Theorem (Unilateral Perturbation Bound (Cai & Z. 2016))
Denote a := Umin(UTXV),ﬁ = O'max(UI)A(VL). Ifa? > B2 + 2%2 A z%l, then

az12 + B2
2_ @2 2
B =z ANy,

| sin®(V, V)| < Al,
(04

a1 + B2

AL
St AT 17}

Isin®U, O)|| <
(04
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Remark

e Since a > S,

azi + B S az) + B2

if z12 > 201,
2_m_ 2 2 2_m2_ 2 2
" =P -z Nz, @ =BT =5 Az,

vice versa.

e When a > max(8, ||Z]|), the upper bound is approximately
Isin®(V, VIl < 22, [Isin®(U, D)l < =
a 04

In contrast, Wedin’s sin ® law only leads to

4]

_’
a

121l

l|sin®(V, V)| < L
07

lIsin®U, )|l <

e The upper bound in Frobenius norm sin ® norm can be derived
similarly.
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Perturbation Bounds for Singular Subspaces

Idea Behind
I, I, -
Assume U = ol V= ol Let us take a look at X.
e When estimating U, z;; becomes “signal” while z;; becomes “noise.”
Estimate U
7y, 212
2y 2y

e When estimating V, z;» becomes “noise” while z,; becomes “signal.”

211 Z1p
m
a
3 l
Q
Y
®
<
2 23

Anru Zhang (UW-Madison) Perturbation Bounds for Singular Subspaces



Perturbation Bounds for Singular Subspaces

Lower Bound

Theorem (Perturbation Lower Bound)

Define the class of p1 X p, rank-r matrices and perturbations,
FraBznn :{(X, Z):rank(X) = r,

Tmin(UTXV) > @, 1Z22]| < B, 1Z12]l < 212, 11Z21 | < ZZ]}-

- 298242 4 2 Pi1ADY
Provided that a” > B~ + 21, + 25, r < =5,

inf sup ||sm o, V)” >
V X2)eFapzy i

( @212 +ﬁZz1 \ 1)
2‘/_ o? =B -z} A2,

inf sup Hsm@(U U)|| >
U XDFaparan

az) + Bz
21 +Bz12 /\1)

,/— 2 N
2 [a’ 4 NGy
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Applications

Application: Matrix Denoising

X=X+2,

Xisrank-r, Z iud sub-Gaussian(0, 1)

e Target: Uor V.
« Natural estimators for U, V: U, V, the first r singular vectors of X.
e Q: How do U, V perform, respectively?
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Applications

e The r-th singular value of X, o,(X), is a good characterization for the
difficulty of this problem.

e Applying the perturbation bound, we obtain

Theorem
Suppose X = U - X - VT € RP'*P2 js of rank-r. Then

C(p20*(X) + p1p2) Al
oH(X)

C(p1o2(X) + pip2) \
TH(X)

E|sinow, M| <

]

1.

E|sinow, 0| <
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Applications

Define the following class of low-rank matrices
Fry = {X € RPP2 s rank(X) = r, 0(X) > 1}.
Theorem (Lower Bound)

Ifr < 2 A%, then

N 2
inf sup E|sin®@(V, V)||2 > c(w A 1),

1% XGTM t4

_ P
inf sup E|sin ©U, D) > c(w A 1).
V Xef,, 4

To sum up,

- £+
inf sup E||sin®(V, V)||2 - [P T PP Al),
V XeF, I

- £+
inf sup E|sin®U, U)|]* = (M Al
v XeFr, t4
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Applications

Some interesting facts

¢ Results for estimating X (Gavish and Donoho, 2014)

X - X|1? +
inf sup Eu = c(pl sz A 1).
X xer,, IXIl t
Thus,
. IX - x> . . ~ . . -
inf sup E—2 =< inf sup El||sin®(U, U)|| + inf sup El||sin ®(V, V).
X XeFy, 4 U XeF,, V. XeF,,

e When ps > pi, (pip2)'/? < > < pa,

o X - X|1?
inf sup Elsin®(V, V)l > ¢, inf sup E-— X
V. XeF,, X xer,, IIXIl

On the other hand,
E|sine@, U)|° - o.
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Applications

Simulation Results

(1,p2, 1,0 Nsin®W, U)IF  |Isin @V, V)|

(10, 100, 2, 15) 0.0669 0.3512

(10, 100, 2, 30) 0.0139 0.1120

(20, 100, 5, 20) 0.0930 0.2711

(20, 100, 5, 40) 0.0195 0.0770
(20,1000, 5, 30) 0.0699 0.5838
(20, 1000, 10, 100) 0.0036 0.1060
(200, 1000, 10, 50) 0.0797 0.3456
(200, 1000, 50, 100) 0.0205 0.1289

Table: Average losses in spectral sin ® distances for both the left and right
singular space changes after Gaussian noise perturbations.
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Applications

Application 2: High-dimensional Clustering

e Observations: Xi,...,X, e R, p > n.
e Each point belongs to one of two classes.

. jid .
Xi=puli+eg, i=1,...,n, & "~ sub-Gaussian(0,c?).

l; € {-1,1} are labels; u € R” is the mean.

e Goal: recover labels .
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Applications

e Suppose it € R?, ¥ € R" are the first left, right singular vector of
[X1 Xz - X,] € RP
e Method: in this simple model, we recover [ by

1= sgn(d).

e Reason:

» 11 contains information of u  —  less important;
» ¥ contains information of/ —  more important.

Good match to the unilateral perturbation bound.
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Applications

For any label estimator 7, define the misclassification rate

p p
ML = %max {Z i # 1), Z 1l # —z,-}}.
1

i= i=1
Theorem (Misclassification Rate)
Suppose p > n. When ||ull, > C(p/n)%,
Cp

EM{I,) < — .
I|u||§ nllull‘z‘

Moreover, ||ull» > C(p/n)"/* is necessary since

Theorem (Lower Bound)
Suppose p > n,

Bl—

inf sup EM(Z 0>
D ldbzepin?
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Application 3: Canonical Correlation Analysis (CCA)

e Two sets of random variables with joint distribution
X Xy Xxy
COV(Y) [EYX 2 ]
e 1 observations
[X1,...,X,] R [Yy,...,Y,] € RPP",

e Canonical Correlation Analysis (CCA) searches for the pairs of
canonical correlation directions with maximized correlation.
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Applications

¢ |n short,

S =3Py, ? ~ U VT

Canonical correlation directions:
12 12
A=3X."U, B=%,"°V.

e To estimate, we calculate

§=5118 812~ 05,07 + 0,5,

Y

Sample Canonical correlation directions:

A

_$s-1/2f S _$-1)2
A=370, B=%;

A
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Applications

Theorem (Unilateral Upper Bound for CCA)
3
Whenever a-f(S) > C((plpz)% +p1+p, /n%), with high probability

o C C
max Ex:||[(A0)"X* —ATX*H% < Zpl + rpipz c
0 no(S)  n?ay(S)

" C C
max Ey-||(BO)TY* — BTY*”% < sz + rp41p2 :
0 noz(S)  n2o(S)

1
e When p, > pi, 2 > ¢(S) > %
no consistent estimator for B;
A is a consistent estimator of A.
e This interesting phenomena again shows the merit of our proposed

unilateral perturbation bound.
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Other Applications...

The proposed perturbation bound can be potentially used in other
applications...

e Community detection

e Multidimensional scaling (MDS)

e Matrix completion

e Cross-covariance matrix estimation
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Applications

Reference
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Thank you for your attention!
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