Recursive Importance Sketching for Rank Constrained Least Squares: Algorithms and High-order Convergence

Anru Zhang

Department of Statistics University of Wisconsin-Madison

Department of Biostatistics & Bioinformatics

Duke University

Yuetian Luo UW-Madison

Wen Huang Xiamen University

Xudong Li Fudan University

Problem of Interest

$$\min_{\mathbf{X} \in \mathbb{R}^{p_1 \times p_2}} f(\mathbf{X}) := \frac{1}{2} \|\mathbf{y} - \mathcal{A}(\mathbf{X})\|_2^2, \quad \text{subject to} \quad \operatorname{rank}(\mathbf{X}) = r,$$
 where $\mathbf{y} \in \mathbb{R}^n, \mathcal{A}(\mathbf{X}) = [\langle \mathbf{A}_1, \mathbf{X} \rangle, \dots, \langle \mathbf{A}_n, \mathbf{X} \rangle]^\top.$

Problem of Interest

$$\min_{\mathbf{X} \in \mathbb{R}^{p_1 \times p_2}} f(\mathbf{X}) := \frac{1}{2} \|\mathbf{y} - \mathcal{A}(\mathbf{X})\|_2^2, \quad \text{subject to} \quad \operatorname{rank}(\mathbf{X}) = r,$$
 where $\mathbf{y} \in \mathbb{R}^n, \mathcal{A}(\mathbf{X}) = [\langle \mathbf{A}_1, \mathbf{X} \rangle, \dots, \langle \mathbf{A}_n, \mathbf{X} \rangle]^\top.$

Motivation: Low rank matrix recovery

- Observe \mathbf{y}, \mathcal{A} from $\mathbf{y} = \mathcal{A}(\mathbf{X}^*) + \epsilon$. Goal: recover \mathbf{X}^* from \mathbf{y}, \mathcal{A} Specific problems:
 - Matrix regression: $\mathbf{A}_i \overset{i.i.d.}{\sim} \mathcal{N}(0,1)$ [Candès and Plan, 2011, Recht et al., 2010]
 - Matrix Completion: A; has one entry to be 1, others are 0
 [Candès and Tao, 2010]
 - ullet Phase retrieval: $oldsymbol{\mathsf{A}}_i = oldsymbol{\mathsf{a}}_i oldsymbol{\mathsf{a}}_i^ op$ [Shechtman et al., 2015]
 - ullet Rank-one sensing: $oldsymbol{\mathsf{A}}_i = oldsymbol{\mathsf{a}}_i oldsymbol{\mathsf{b}}_i^ op$ [Cai and Zhang, 2015, Chen et al., 2015]

Prior Work

• Convex relaxation: $\min_{\mathbf{X}} \frac{1}{2} \|\mathbf{y} - \mathcal{A}(\mathbf{X})\|_2^2 + \lambda \|\mathbf{X}\|_*$ [Recht et al., 2010, Candès and Plan, 2011]

Theoretical properties <a> computation can be intensive

- Non-convex methods: enforce rank r constraint
 - Factorize $\mathbf{X} = \mathbf{R} \mathbf{L}^{\top} + \mathbf{G}$ Gradient descent or Alternating Minimization on $\mathbf{R} \in \mathbb{R}^{p_1 \times r}, \mathbf{L} \in \mathbb{R}^{p_2 \times r}$ [Ma et al., 2019, Park et al., 2018, Sun and Luo, 2015, Tu et al., 2016, Wang et al., 2017, Zhao et al., 2015, Zheng and Lafferty, 2015, Jain et al., 2013, Hardt, 2014]...
 - Projected gradient descent (Singular value projection (SVP), Iterative Hard Thresholding (IHT)) [Goldfarb and Ma, 2011, Jain et al., 2010, Tanner and Wei, 2013]...
 - Manifold optimization
 [Boumal and Absil, 2011, Keshavan et al., 2009, Mishra et al., 2014, Vandereycken, 2013, Wei et al., 2016]
 - •

Prior Work

• Convex relaxation: $\min_{\mathbf{X}} \frac{1}{2} \|\mathbf{y} - \mathcal{A}(\mathbf{X})\|_2^2 + \lambda \|\mathbf{X}\|_*$ [Recht et al., 2010, Candès and Plan, 2011]

Theoretical properties <a> computation can be intensive

- Non-convex methods: enforce rank r constraint
 - Factorize $\mathbf{X} = \mathbf{R}\mathbf{L}^{\top} + \mathbf{G}$ Gradient descent or Alternating Minimization on $\mathbf{R} \in \mathbb{R}^{p_1 \times r}, \mathbf{L} \in \mathbb{R}^{p_2 \times r}$ [Ma et al., 2019, Park et al., 2018, Sun and Luo, 2015, Tu et al., 2016, Wang et al., 2017, Zhao et al., 2015, Zheng and Lafferty, 2015, Jain et al., 2013, Hardt, 2014]...
 - Projected gradient descent (Singular value projection (SVP), Iterative Hard Thresholding (IHT)) [Goldfarb and Ma, 2011, Jain et al., 2010, Tanner and Wei, 2013]...
 - Manifold optimization
 [Boumal and Absil, 2011, Keshavan et al., 2009, Mishra et al., 2014, Vandereycken, 2013, Wei et al., 2016]
 - ...
- Most of existing algorithms
 - require careful tuning or
 - have a convergence rate no faster than linear.
 - \implies Can we do better?

Our Algorithm: RISRO

<u>Recursive Importance Sketching</u> algorithm for <u>Rank</u> constrained least squares <u>Optimization</u> (RISRO).

Advantages

- Tuning free
- High-order convergence guarantees under proper assumptions

- **1** Input \mathbf{y}, \mathcal{A} , and initialization \mathbf{X}^0 with (economic) SVD $\mathbf{U}^0 \mathbf{\Sigma}^0 \mathbf{V}^{0\top}$
- ② For t = 0, 1, ...
 - Perform importance sketching on A.

■ Solve a dimension reduced least squares.

Update sketching matrices.

- **1** Input \mathbf{y}, \mathcal{A} , and initialization \mathbf{X}^0 with (economic) SVD $\mathbf{U}^0 \mathbf{\Sigma}^0 \mathbf{V}^{0\top}$
- ② For t = 0, 1, ...
 - Perform importance sketching on \mathcal{A} . Construct importance covariates $\mathbf{A}_i^B := \mathbf{U}^{t\top} \mathbf{A}_i \mathbf{V}^t, \mathbf{A}_i^{D_1} := \mathbf{U}^{t\top} \mathbf{A}_i \mathbf{V}^t, \mathbf{A}_i^{D_2} := \mathbf{U}^{t\top} \mathbf{A}_i \mathbf{V}^t$

■ Solve a dimension reduced least squares.

Update sketching matrices.

- **1** Input ${f y}, {\cal A}$, and initialization ${f X}^0$ with (economic) SVD ${f U}^0{f \Sigma}^0{f V}^{0 op}$
- ② For t = 0, 1, ...
 - Perform importance sketching on \mathcal{A} . Construct importance covariates $\mathbf{A}_{i}^{B} := \mathbf{U}^{t\top} \mathbf{A}_{i} \mathbf{V}^{t}, \mathbf{A}_{i}^{D_{1}} := \mathbf{U}_{1}^{t\top} \mathbf{A}_{i} \mathbf{V}^{t}, \mathbf{A}_{i}^{D_{2}} := \mathbf{U}^{t\top} \mathbf{A}_{i} \mathbf{V}_{1}^{t}$

■ Solve a dimension reduced least squares.

$$(\mathbf{B}^{t+1}, \mathbf{D}_1^{t+1}, \mathbf{D}_2^{t+1}) = \operatorname*{arg\,min}_{\mathbf{B}, \mathbf{D}_1, \mathbf{D}_2} \sum_{i=1}^n \left(\mathbf{y}_i - \langle \mathbf{A}_i^B, \mathbf{B} \rangle - \langle \mathbf{A}_i^{D_1}, \mathbf{D}_1 \rangle - \langle \mathbf{A}_i^{D_2}, \mathbf{D}_2^\top \rangle \right)^2$$

■ Update sketching matrices.

- **1** Input \mathbf{y}, \mathcal{A} , and initialization \mathbf{X}^0 with (economic) SVD $\mathbf{U}^0 \mathbf{\Sigma}^0 \mathbf{V}^{0\top}$
- ② For t = 0, 1, ...
 - Perform importance sketching on \mathcal{A} . Construct importance covariates $\mathbf{A}_i^B := \mathbf{U}^{t\top} \mathbf{A}_i \mathbf{V}^t, \mathbf{A}_i^{D_1} := \mathbf{U}_1^{t\top} \mathbf{A}_i \mathbf{V}^t, \mathbf{A}_i^{D_2} := \mathbf{U}^{t\top} \mathbf{A}_i \mathbf{V}^t$

■ Solve a dimension reduced least squares.

$$(\mathbf{B}^{t+1}, \mathbf{D}_1^{t+1}, \mathbf{D}_2^{t+1}) = \operatorname*{arg\,min}_{\mathbf{B}, \mathbf{D}_1, \mathbf{D}_2} \sum_{i=1}^n \left(\mathbf{y}_i - \langle \mathbf{A}_i^B, \mathbf{B} \rangle - \langle \mathbf{A}_i^{D_1}, \mathbf{D}_1 \rangle - \langle \mathbf{A}_i^{D_2}, \mathbf{D}_2^\top \rangle \right)^2$$

- Update sketching matrices. Let $\mathbf{X}_U^{t+1} = (\mathbf{U}^t \mathbf{B}^{t+1} + \mathbf{U}_\perp^t \mathbf{D}_1^{t+1}),$ $\mathbf{X}_V^{t+1} = (\mathbf{V}^t \mathbf{B}^{t+1\top} + \mathbf{V}_\perp^t \mathbf{D}_2^{t+1}).$ Update $\mathbf{U}^{t+1} = \mathrm{QR}(\mathbf{X}_U^{t+1}),$ $\mathbf{V}^{t+1} = \mathrm{QR}(\mathbf{X}_V^{t+1}).$
- lacksquare (Optional) $\mathbf{X}^{t+1} = \mathbf{X}_U^{t+1} \left(\mathbf{B}^{t+1} \right)^{\dagger} \mathbf{X}_V^{t+1 \top}$

 $\mathrm{QR}(\cdot)$ is the Q part in QR decomposition and $(\cdot)^\dagger$ is the Moore-Penrose inverse

RISRO-Intuition

Suppose $\mathbf{y}_i = \langle \mathbf{A}_i, \overline{\mathbf{X}} \rangle + \overline{\epsilon}_i$ where $\overline{\mathbf{X}}$ is a rank r target matrix. Rewritten $\mathbf{y}_i = \langle \mathbf{A}_i^B, \mathbf{U}^{t\top} \overline{\mathbf{X}} \mathbf{V}^t \rangle + \langle \mathbf{A}_i^{D_1}, \mathbf{U}_{\perp}^{t\top} \overline{\mathbf{X}} \mathbf{V}^t \rangle + \langle \mathbf{A}_i^{D_2}, \mathbf{U}^{t\top} \overline{\mathbf{X}} \mathbf{V}_{\perp}^t \rangle + \epsilon_i^t,$ where $\boldsymbol{\epsilon}_i^t = \langle \mathbf{U}_{\perp}^{t\top} \mathbf{A}_i \mathbf{V}_{\perp}^t, \mathbf{U}_{\perp}^{t\top} \overline{\mathbf{X}} \mathbf{V}_{\perp}^t \rangle + \overline{\epsilon}_i$.

RISRO-Intuition

Suppose $\mathbf{y}_i = \langle \mathbf{A}_i, \overline{\mathbf{X}} \rangle + \overline{\epsilon}_i$ where $\overline{\mathbf{X}}$ is a rank r target matrix. Rewritten

$$\mathbf{y}_i = \langle \mathbf{A}_i^B, \mathbf{U}^{t\top} \bar{\mathbf{X}} \mathbf{V}^t \rangle + \langle \mathbf{A}_i^{D_1}, \mathbf{U}_{\perp}^{t\top} \bar{\mathbf{X}} \mathbf{V}^t \rangle + \langle \mathbf{A}_i^{D_2}, \mathbf{U}^{t\top} \bar{\mathbf{X}} \mathbf{V}_{\perp}^t \rangle + \epsilon_i^t,$$

where ${m \epsilon}_i^t = \langle {m U}_{\perp}^{t op} {m A}_i {m V}_{\perp}^t, {m U}_{\perp}^{t op} {ar{m x}} {m V}_{\perp}^t \rangle + {ar{m \epsilon}}_i$.

If $\epsilon^t = 0$. Then

$$\mathbf{B}^{t+1} = \mathbf{U}^{t\top}\bar{\mathbf{X}}\mathbf{V}^t, \quad \mathbf{D}_1^{t+1} = \mathbf{U}_{\perp}^{t\top}\bar{\mathbf{X}}\mathbf{V}^t, \quad \mathbf{D}_2^{t+1} = \mathbf{U}^{t\top}\bar{\mathbf{X}}\mathbf{V}_{\perp}^t$$

is a solution of the least squares. Moreover if \mathbf{B}^{t+1} is invertible

$$\mathbf{X}^{t+1} = \mathbf{X}_U^{t+1} \left(\mathbf{B}^{t+1}
ight)^{-1} \mathbf{X}_V^{t+1 op} = \mathbf{ar{X}}$$

In general $\boldsymbol{\epsilon}^t \neq 0$, but we hope $\mathbf{X}^t \rightarrow \mathbf{\bar{X}}$.

Importance Sketching in RISRO

Sketching: do dimension reduction to speed up the computation

Comparison of Importance Sketching and Randomized Sketching

	Importance Sketching	Randomized Sketching	
	importance Sketching	[Mahoney, 2011, Woodruff, 2014]	
Sketching Matrix	Deterministic, \mathbf{U}^t , \mathbf{V}^t (with supervision)	Random	
Dimension reduction	Reduce p, hold n	Reduce <i>n</i> , hold <i>p</i>	
Statistical efficiency	High	Low	

• Alternating Minimization (Alter Mini) [Jain et al., 2013, Zhao et al., 2015]

$$\begin{split} \widehat{\mathbf{V}}^{t+1} &= \operatorname*{arg\,min}_{\mathbf{V} \in \mathbb{R}^{p_2 \times r}} \sum_{i=1}^n \left(\mathbf{y}_i - \langle \mathbf{A}_i, \mathbf{U}^t \mathbf{V}^\top \rangle \right)^2 = \operatorname*{arg\,min}_{\mathbf{V} \in \mathbb{R}^{p_2 \times r}} \sum_{i=1}^n \left(\mathbf{y}_i - \langle \mathbf{U}^{t\top} \mathbf{A}_i, \mathbf{V}^\top \rangle \right)^2, \\ \mathbf{V}^{t+1} &= \mathrm{QR}(\widehat{\mathbf{V}}^{t+1}) \end{split}$$

Alternating Minimization (Alter Mini) [Jain et al., 2013, Zhao et al., 2015]

$$\begin{split} \widehat{\mathbf{V}}^{t+1} &= \operatorname*{arg\,min}_{\mathbf{V} \in \mathbb{R}^{p_2 \times r}} \sum_{i=1}^n \left(\mathbf{y}_i - \langle \mathbf{A}_i, \mathbf{U}^t \mathbf{V}^\top \rangle \right)^2 = \operatorname*{arg\,min}_{\mathbf{V} \in \mathbb{R}^{p_2 \times r}} \sum_{i=1}^n \left(\mathbf{y}_i - \langle \mathbf{U}^{t\top} \mathbf{A}_i, \mathbf{V}^\top \rangle \right)^2, \\ \mathbf{V}^{t+1} &= \mathrm{QR}(\widehat{\mathbf{V}}^{t+1}) \end{split}$$

 Rank 2r iterative least squares (R2RILS) for matrix completion [Bauch and Nadler, 2020]

$$\min_{\mathbf{M} \in \mathbb{R}^{p_1 \times r}, \mathbf{N} \in \mathbb{R}^{p_2 \times r}} \sum_{(i,i) \in \Omega} \left\{ \left(\mathbf{U}^t \mathbf{N}^\top + \mathbf{M} \mathbf{V}^{t\top} - \mathbf{X} \right)_{[i,j]} \right\}^2,$$

 Ω is the observed entry indices.

• Alternating Minimization (Alter Mini) [Jain et al., 2013, Zhao et al., 2015]

$$\begin{split} \widehat{\mathbf{V}}^{t+1} &= \operatorname*{arg\,min}_{\mathbf{V} \in \mathbb{R}^{P_2 \times r}} \sum_{i=1}^n \left(\mathbf{y}_i - \langle \mathbf{A}_i, \mathbf{U}^t \mathbf{V}^\top \rangle \right)^2 = \operatorname*{arg\,min}_{\mathbf{V} \in \mathbb{R}^{P_2 \times r}} \sum_{i=1}^n \left(\mathbf{y}_i - \langle \mathbf{U}^{t\top} \mathbf{A}_i, \mathbf{V}^\top \rangle \right)^2, \\ \mathbf{V}^{t+1} &= \mathrm{QR}(\widehat{\mathbf{V}}^{t+1}) \end{split}$$

$$A_i \qquad \qquad (U^t)^T A_i$$
Sketching in Alter Mini

 Rank 2r iterative least squares (R2RILS) for matrix completion [Bauch and Nadler, 2020]

$$\sum_{(i,j)\in\Omega} \left\{ \left(\mathbf{U}^t\mathbf{N}^\top + \mathbf{M}\mathbf{V}^{t\top} - \mathbf{X}\right)_{[i,j]} \right\}^2 \Longleftrightarrow \sum_{(i,j)\in\Omega} \left(\mathbf{X}_{[i,j]} - \langle \mathbf{U}^{t\top}\mathbf{A}^{ij}, \mathbf{N}^\top \rangle - \langle \mathbf{M}, \mathbf{A}^{ij}\mathbf{V}^t \rangle \right)^2$$

Anru Zhang () Importance Sketching

- Alter Mini: Miss one set of covariates ⇒ large iteration error
- R2RILS: Double core sketch \Longrightarrow $\left\{ egin{array}{ll} \mbox{Rank deficiency in the least squares} \\ \mbox{Hard in theory and implementation} \end{array} \right.$
- ★ RISRO: resolve both issues ⇒ High-order convergence!

Convergence Analysis

Let $\bar{\mathbf{X}}$ be a rank r stationary point and $\bar{\epsilon} := \mathbf{y} - \mathcal{A}(\bar{\mathbf{X}})$. Assume

- ullet A satisfies 3*r*-restricted isometry property (RIP) with RIP constant δ
- Initialization condition: $\|\mathbf{X}^0 \bar{\mathbf{X}}\|_{\mathbf{F}} \leq C(\delta)\sigma_r(\bar{\mathbf{X}})$
- Small residual (gradient) condition: $\|\mathcal{A}^*(\bar{\epsilon})\|_{\mathsf{F}} \leq C'(\delta)\sigma_r(\bar{\mathbf{X}})$.

 $\sigma_r(\bar{\mathbf{X}})$ is the r-th largest singular value of $\bar{\mathbf{X}}$. $\mathcal{A}^*(\mathbf{b}) := \sum_{i=1}^n \mathbf{b}_i \mathbf{A}_i$ is the adjoint operator of \mathcal{A} .

Let $\bar{\mathbf{X}}$ be a rank r stationary point and $\bar{\epsilon} := \mathbf{y} - \mathcal{A}(\bar{\mathbf{X}})$.

<u>Theorem 1</u>: Under the assumptions above, \mathbf{X}^t generated by RISRO converges Q-linearly to $\bar{\mathbf{X}}$:

$$\|\mathbf{X}^{t+1} - \bar{\mathbf{X}}\|_{\mathbf{F}} \leq \frac{3}{4} \|\mathbf{X}^t - \bar{\mathbf{X}}\|_{\mathbf{F}}, \quad \forall t \geq 0.$$

Let $\bar{\mathbf{X}}$ be a rank r stationary point and $\bar{\epsilon} := \mathbf{y} - \mathcal{A}(\bar{\mathbf{X}})$.

<u>Theorem 1</u>: Under the assumptions above, \mathbf{X}^t generated by RISRO converges Q-linearly to $\bar{\mathbf{X}}$:

$$\|\mathbf{X}^{t+1} - \bar{\mathbf{X}}\|_{\mathbf{F}} \leq \frac{3}{4} \|\mathbf{X}^t - \bar{\mathbf{X}}\|_{\mathbf{F}}, \quad \forall \ t \geq 0.$$

$$\|\mathbf{X}^{t+1} - \bar{\mathbf{X}}\|_{\mathbf{F}}^2 \leq \frac{c_1(\delta)\|\mathbf{X}^t - \bar{\mathbf{X}}\|^2}{\sigma_r^2(\bar{\mathbf{X}})} \left(\|\mathbf{X}^t - \bar{\mathbf{X}}\|_{\mathbf{F}}^2 + \|\mathcal{A}^*(\bar{\boldsymbol{\epsilon}})\|_{\mathbf{F}}\|\mathbf{X}^t - \bar{\mathbf{X}}\|_{\mathbf{F}} + \|\mathcal{A}^*(\bar{\boldsymbol{\epsilon}})\|_{\mathbf{F}}^2\right), \quad \forall \ t \geq 0$$

Let $\bar{\mathbf{X}}$ be a rank r stationary point and $\bar{\epsilon} := \mathbf{y} - \mathcal{A}(\bar{\mathbf{X}})$.

<u>Theorem 1</u>: Under the assumptions above, \mathbf{X}^t generated by RISRO converges Q-linearly to $\bar{\mathbf{X}}$:

$$\|\mathbf{X}^{t+1} - \bar{\mathbf{X}}\|_{\mathbf{F}} \leq \frac{3}{4} \|\mathbf{X}^t - \bar{\mathbf{X}}\|_{\mathbf{F}}, \quad \forall \ t \geq 0.$$

$$\|\mathbf{X}^{t+1} - \bar{\mathbf{X}}\|_{\mathbf{F}}^2 \leq \frac{c_1(\delta)\|\mathbf{X}^t - \mathbf{X}\|^2}{\sigma_r^2(\bar{\mathbf{X}})} \left(\|\mathbf{X}^t - \bar{\mathbf{X}}\|_{\mathbf{F}}^2 + \|\mathcal{A}^*(\bar{\boldsymbol{\epsilon}})\|_{\mathbf{F}}\|\mathbf{X}^t - \bar{\mathbf{X}}\|_{\mathbf{F}} + \|\mathcal{A}^*(\bar{\boldsymbol{\epsilon}})\|_{\mathbf{F}}^2\right), \quad \forall \ t \geq 0$$

If $ar{\epsilon}=0$, then $\{old X^t\}$ converges quadratically to $ar{f X}$ as

$$\|\mathbf{X}^{t+1} - \bar{\mathbf{X}}\|_{\mathsf{F}} \leq \frac{\sqrt{c_1(\delta)}\|\mathbf{X}^t - \bar{\mathbf{X}}\|_{\mathsf{F}}^2}{\sigma_r(\bar{\mathbf{X}})}, \quad \forall \ t \geq 0.$$

★ Quadratic-linear convergence

$$\|\mathbf{X}^{t+1} - \bar{\mathbf{X}}\|_{\mathsf{F}}^2 \leq \frac{c_1(\delta)\|\mathbf{X}^t - \bar{\mathbf{X}}\|^2}{\sigma_r^2(\bar{\mathbf{X}})} \left(\|\mathbf{X}^t - \bar{\mathbf{X}}\|_{\mathsf{F}}^2 + \|\mathcal{A}^*(\bar{\boldsymbol{\epsilon}})\|_{\mathsf{F}} \|\mathbf{X}^t - \bar{\mathbf{X}}\|_{\mathsf{F}} + \|\mathcal{A}^*(\bar{\boldsymbol{\epsilon}})\|_{\mathsf{F}}^2 \right).$$

- ullet when $\|\mathbf{X}^t ar{\mathbf{X}}\|_{\mathsf{F}} \gg \|\mathcal{A}^*(ar{\epsilon})\|_{\mathsf{F}} \Longrightarrow$ quadratic convergence
- when $\|\mathbf{X}^t \bar{\mathbf{X}}\|_{\mathsf{F}} \leq c \|\mathcal{A}^*(\bar{\boldsymbol{\epsilon}})\|_{\mathsf{F}} \Longrightarrow$ reduce to linear convergence

 $\bar{\epsilon}\downarrow\Longrightarrow$ Longer period of quadratic convergence.

★ Quadratic-linear convergence

$$\|\mathbf{X}^{t+1} - \bar{\mathbf{X}}\|_{\mathsf{F}}^2 \leq \frac{c_1(\delta)\|\mathbf{X}^t - \bar{\mathbf{X}}\|^2}{\sigma_r^2(\bar{\mathbf{X}})} \left(\|\mathbf{X}^t - \bar{\mathbf{X}}\|_{\mathsf{F}}^2 + \|\mathcal{A}^*(\bar{\boldsymbol{\epsilon}})\|_{\mathsf{F}}\|\mathbf{X}^t - \bar{\mathbf{X}}\|_{\mathsf{F}} + \|\mathcal{A}^*(\bar{\boldsymbol{\epsilon}})\|_{\mathsf{F}}^2\right).$$

- when $\|\mathbf{X}^t \bar{\mathbf{X}}\|_{\mathsf{F}} \gg \|\mathcal{A}^*(\bar{\epsilon})\|_{\mathsf{F}} \Longrightarrow$ quadratic convergence
- when $\|\mathbf{X}^t \bar{\mathbf{X}}\|_{\mathbf{F}} \le c \|\mathcal{A}^*(\bar{\boldsymbol{\epsilon}})\|_{\mathbf{F}} \Longrightarrow$ reduce to linear convergence

 $ar{\epsilon}\downarrow\Longrightarrow$ Longer period of quadratic convergence.

- \star $\bar{\epsilon}=0$ \Longrightarrow $\mathbf{y}=\mathcal{A}(\bar{\mathbf{X}})$ \Longrightarrow matrix sensing [Recht et al., 2010] RISRO achieves quadratic convergence
- \star $\mathcal{A}: \mathbb{R}^{p_1 \times p_2} \to \mathbb{R}^n$ satisfies the *r*-restricted isometry property with RIP constant $\delta \in [0,1)$ if

$$(1 - \delta) \|\mathbf{Z}\|_{\mathsf{F}}^2 \le \|\mathcal{A}(\mathbf{Z})\|_2^2 \le (1 + \delta) \|\mathbf{Z}\|_{\mathsf{F}}^2$$

for all **Z** of rank at most r. [Candès, 2008, Recht et al., 2010]

Simulation

 $\mathbf{y}_i = \langle \mathbf{A}_i, \mathbf{X}^* \rangle + \epsilon_i$ for $1 \leq i \leq n$, $\mathbf{A}_i \overset{i.i.d.}{\sim} \mathcal{N}(0,1)$ and $\epsilon_i \overset{i.i.d.}{\sim} \mathcal{N}(0,\sigma^2)$. $\mathbf{X}^* \in \mathbb{R}^{p \times p}$ with $p = 100, r = 3, \kappa(\mathbf{X}^*) = 1$ and $\mathbf{X}^0 = \mathrm{SVD}_r(\mathcal{A}^*(\mathbf{y}))$.

• (Quadratic-linear) n = 5pr, $\sigma = 10^{\alpha}$ for $\alpha \in \{0, -1, -2, -14\}$

• (Quadratic) $n/(pr) \in \{4, 5, 6, 7, 8\}, \sigma = 0$

Iteration Number

Vs. Other Algorithms

Suppose $p_1 = p_2 = p$ and $n \ge pr$. Under similar assumptions as in Theorem 1:

	GD	PGD (SVP / IHT)	Alter Mini	RISRO (this work)
Per iteration cost	$O(np^2r)$	$O(np^2)$	$O(np^2r^2)$	$O(np^2r^2)$
Tuning	Yes	Yes	No	No
Convergence	Linear	Linear	Linear	Quadratic-(linear)

★ Improve upon Alter Mini for free

Comparison Simulation $\sigma = 0$

Any connection of RISRO to existing optimization algorithms?

Connection to Riemannian Manifold Optimization

Iteration t of RISRO:

- Perform importance sketching.
- Perform a dimension reduced least squares.

③ Update sketching matrices and \mathbf{X}^{t+1} .

Connection to Riemannian Manifold Optimization

Iteration t of RISRO:

- Perform importance sketching.
- Perform a dimension reduced least squares.
 - ⇒ Implicitly solves "Fisher Scoring" or "Riemannian Gauss-Newton" equation in Riemannian optimization on fixed rank matrices.
- **3** Update sketching matrices and X^{t+1} .
 - ⇒ Perform a type of retraction in Riemannian optimization literature

Riemannian Manifold Optimization

- Target: optimize a function f defined on a Riemannian manifold \mathcal{M} . [Absil et al., 2009]
- Common Riemannian manifolds: a smooth subset of \mathbb{R}^n + a Riemannian metric.

Riemannian Manifold Optimization

- Target: optimize a function f defined on a Riemannian manifold \mathcal{M} . [Absil et al., 2009]
- Common Riemannian manifolds: a smooth subset of \mathbb{R}^n + a Riemannian metric.
- $\mathcal{M}_r = \{ \mathbf{X} \in \mathbb{R}^{p_1 \times p_2} : \operatorname{rank}(\mathbf{X}) = r \}$ Riemannian metric: Euclidean inner product, $\langle \mathbf{U}, \mathbf{V} \rangle = \operatorname{trace}(\mathbf{U}^\top \mathbf{V})$

Retraction

• Iterative algorithm: $x^{t+1} = x^t + \xi$.

Manifold optimization: \boldsymbol{x}^{t+1} may not lie in the manifold

Solution: retraction!

Retraction

• Iterative algorithm: $x^{t+1} = x^t + \xi$.

Manifold optimization: x^{t+1} may not lie in the manifold

Solution: retraction!

• Retraction: a smooth map that brings the vector in the tangent space back to the manifold. Denote $T_x \mathcal{M}$ as the tangent space at x

[Absil et al., 2009, Section 4.1]

Retraction

• Iterative algorithm: $x^{t+1} = x^t + \xi$.

Manifold optimization: x^{t+1} may not lie in the manifold

Solution: retraction!

- Retraction: a smooth map that brings the vector in the tangent space back to the manifold. Denote $T_x \mathcal{M}$ as the tangent space at x
- \star Let η^t be the update direction such that $\mathbf{X}^t + \eta^t$ has the following representation,

$$\mathbf{X}^t + \boldsymbol{\eta^t} = \begin{bmatrix} \mathbf{U}^t & \mathbf{U}_{\perp}^t \end{bmatrix} \begin{bmatrix} \mathbf{B}^{t+1} & \mathbf{D}_2^{t+1}^{\top} \\ \mathbf{D}_1^{t+1} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{V}^t & \mathbf{V}_{\perp}^t \end{bmatrix}^{\top}.$$

 $\star X^t + \eta^t \Longrightarrow X^{t+1}$. Retraction is:

$$\mathbf{X}^{t+1} = R_{\mathbf{X}^t}(\boldsymbol{\eta}^t) = \begin{bmatrix} \mathbf{U}^t & \mathbf{U}_{\perp}^t \end{bmatrix} \begin{bmatrix} \mathbf{B}^{t+1} & \mathbf{D}_2^{t+1\top} \\ \mathbf{D}_1^{t+1} & \mathbf{D}_1^{t+1}(\mathbf{B}^{t+1})^{-1} \mathbf{D}_2^{t+1\top} \end{bmatrix} \begin{bmatrix} \mathbf{V}^t & \mathbf{V}_{\perp}^t \end{bmatrix}^{\top}$$

 \uparrow η^t solves the Fisher Scoring or Riemannian Gauss-Newton direction.

Recall
$$f(\mathbf{X}) := \frac{1}{2} \|\mathbf{y} - \mathcal{A}(\mathbf{X})\|_2^2$$
.

- Riemannian Gradient: $\operatorname{grad} f(X)$
- Riemannian Hessian: Hessf(X)
- Riemannian Newton direction η_{Newton}

$$-\operatorname{grad} f(\mathbf{X}) = \operatorname{Hess} f(\mathbf{X})[\underline{\eta_{\mathrm{Newton}}}]$$

Recall
$$f(\mathbf{X}) := \frac{1}{2} \|\mathbf{y} - \mathcal{A}(\mathbf{X})\|_2^2$$
.

- Riemannian Gradient: $\operatorname{grad} f(\mathbf{X}) = P_{T_{\mathbf{X}}}(\mathcal{A}^*(\mathcal{A}(\mathbf{X}) \mathbf{y})).$ $P_{T_{\mathbf{X}}}(\cdot)$ is the orthogonal projector onto the tangent space at \mathbf{X} .
- Riemannian Hessian: $\operatorname{Hess} f(\mathbf{X})[\eta] = P_{T_{\mathbf{X}}}(\mathcal{A}^*(\mathcal{A}(\eta))) + h(\mathbf{y} \mathcal{A}(\mathbf{X})).$ $h(\cdot)$ here has complex dependence on \mathbf{X}, η .
- Riemannian Newton direction η_{Newton}

$$-\mathrm{grad} f(\mathbf{X}) = \mathrm{Hess} f(\mathbf{X})[\eta_{\mathrm{Newton}}]$$

$$\iff -\mathrm{grad} f(\mathbf{X}) = P_{\mathcal{T}_{\mathbf{X}}} \left(\mathcal{A}^* (\mathcal{A}(\eta_{\mathrm{Newton}})) \right) + h(\mathbf{y} - \mathcal{A}(\mathbf{X}))$$

Recall
$$f(\mathbf{X}) := \frac{1}{2} \|\mathbf{y} - \mathcal{A}(\mathbf{X})\|_2^2$$
.

- Riemannian Gradient: $\operatorname{grad} f(\mathbf{X}) = P_{T_{\mathbf{X}}}(\mathcal{A}^*(\mathcal{A}(\mathbf{X}) \mathbf{y})).$ $P_{T_{\mathbf{X}}}(\cdot)$ is the orthogonal projector onto the tangent space at \mathbf{X} .
- Riemannian Hessian: $\operatorname{Hess} f(\mathbf{X})[\eta] = P_{T_{\mathbf{X}}}(\mathcal{A}^*(\mathcal{A}(\eta))) + h(\mathbf{y} \mathcal{A}(\mathbf{X})).$ $h(\cdot)$ here has complex dependence on \mathbf{X}, η .
- Riemannian Newton direction η_{Newton}

$$-\operatorname{grad} f(\mathbf{X}) = \operatorname{Hess} f(\mathbf{X})[\eta_{\operatorname{Newton}}]$$

$$\iff -\operatorname{grad} f(\mathbf{X}) = P_{T_{\mathbf{X}}}(\mathcal{A}^*(\mathcal{A}(\eta_{\operatorname{Newton}}))) + h(\mathbf{y} - \mathcal{A}(\mathbf{X}))$$

 $\bullet \ \ \mathsf{Update in \ RISRO:} \ \ \mathbf{X}^t + \boldsymbol{\eta^t} = \begin{bmatrix} \mathbf{U}^t & \mathbf{U}_{\perp}^t \end{bmatrix} \begin{bmatrix} \mathbf{B}^{t+1} & \mathbf{D}_2^{t+1\top} \\ \mathbf{D}_1^{t+1} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{V}^t & \mathbf{V}_{\perp}^t \end{bmatrix}^{\top}.$

Recall
$$f(\mathbf{X}) := \frac{1}{2} \|\mathbf{y} - \mathcal{A}(\mathbf{X})\|_2^2$$
.

- Riemannian Gradient: $\operatorname{grad} f(\mathbf{X}) = P_{T_{\mathbf{X}}}(\mathcal{A}^*(\mathcal{A}(\mathbf{X}) \mathbf{y})).$ $P_{T_{\mathbf{X}}}(\cdot)$ is the orthogonal projector onto the tangent space at \mathbf{X} .
- Riemannian Hessian: $\operatorname{Hess} f(\mathbf{X})[\eta] = P_{T_{\mathbf{X}}}(\mathcal{A}^*(\mathcal{A}(\eta))) + h(\mathbf{y} \mathcal{A}(\mathbf{X})).$ $h(\cdot)$ here has complex dependence on \mathbf{X}, η .
- Riemannian Newton direction η_{Newton}

$$-\mathrm{grad}f(\mathbf{X}) = \mathrm{Hess}f(\mathbf{X})[\eta_{\mathrm{Newton}}]$$

$$\iff -\mathrm{grad}f(\mathbf{X}) = P_{\mathcal{T}_{\mathbf{X}}}(\mathcal{A}^*(\mathcal{A}(\eta_{\mathrm{Newton}}))) + h(\mathbf{y} - \mathcal{A}(\mathbf{X}))$$

• Update in RISRO: $\mathbf{X}^t + \mathbf{\eta}^t = [\mathbf{U}^t \quad \mathbf{U}_{\perp}^t] \begin{bmatrix} \mathbf{B}^{t+1} & \mathbf{D}_2^{t+1\top} \\ \mathbf{D}_1^{t+1} & \mathbf{0} \end{bmatrix} [\mathbf{V}^t \quad \mathbf{V}_{\perp}^t]^{\top}.$

Theorem 2: η^t solves

$$-\operatorname{grad} f(\mathbf{X}^t) = P_{T_{\mathbf{X}^t}} \left(\mathcal{A}^* (\mathcal{A}(\eta)) \right).$$

$$h(y - A(X))$$
 is just thrown away!

Connection of RISRO and Riemannian optimization

Suppose $\mathbf{y} = \mathcal{A}(\mathbf{X}) + \boldsymbol{\epsilon}$, where \mathbf{X} is a fixed matrix and $\boldsymbol{\epsilon}_i \overset{i.i.d.}{\sim} \mathcal{N}(0, \sigma^2)$. Then for any $\boldsymbol{\eta}$,

$$\{\mathbb{E}(\operatorname{Hess} f(\mathbf{X})[\frac{\eta}{l}])\} |_{\mathbf{X}=\mathbf{X}^t} = P_{T_{\mathbf{X}^t}} \left(\mathcal{A}^*(\mathcal{A}(\frac{\eta}{l}))\right).$$

Connection of RISRO and Riemannian optimization

Suppose $\mathbf{y} = \mathcal{A}(\mathbf{X}) + \boldsymbol{\epsilon}$, where \mathbf{X} is a fixed matrix and $\boldsymbol{\epsilon}_i \overset{i.i.d.}{\sim} \mathcal{N}(0, \sigma^2)$. Then for any η ,

$$\left\{\mathbb{E}(\mathrm{Hess} f(\mathbf{X})[\underline{\boldsymbol{\eta}}])\right\}|_{\mathbf{X}=\mathbf{X}^t} = P_{T_{\mathbf{X}^t}}\left(\mathcal{A}^*(\mathcal{A}(\underline{\boldsymbol{\eta}}))\right).$$

By Theorem 2, η^t solves

$$-\operatorname{grad} f(\mathbf{X}^t) = \{\mathbb{E}(\operatorname{Hess} f(\mathbf{X})[\underline{\eta}])\}|_{\mathbf{X} = \mathbf{X}^t}.$$

Connection of RISRO and Riemannian optimization

Suppose $\mathbf{y} = \mathcal{A}(\mathbf{X}) + \boldsymbol{\epsilon}$, where \mathbf{X} is a fixed matrix and $\boldsymbol{\epsilon}_i \overset{i.i.d.}{\sim} \mathcal{N}(0, \sigma^2)$. Then for any $\boldsymbol{\eta}$, $\{\mathbb{E}(\mathrm{Hess}f(\mathbf{X})[\boldsymbol{\eta}])\}|_{\mathbf{X}=\mathbf{X}^t} = P_{T_{\mathbf{Y}t}}\left(\mathcal{A}^*(\mathcal{A}(\boldsymbol{\eta}))\right)$.

By Theorem 2, η^t solves

$$-\operatorname{grad} f(\mathbf{X}^t) = \{\mathbb{E}(\operatorname{Hess} f(\mathbf{X})[\underline{\eta}])\} \mid_{\mathbf{X} = \mathbf{X}^t}.$$

This algorithm is called Fisher Scoring in literature [Lange, 2010].

Applications to Statistics and Machine Learning

Applications to Statistics and Machine Learning

• Low-rank matrix trace regression model:

$$\mathbf{y}_i = \langle \mathbf{A}_i, \mathbf{X}^* \rangle + \epsilon_i, \quad \text{ for } 1 \leq i \leq n,$$

 $\mathbf{X}^* \in \mathbb{R}^{p_1 \times p_2}$ is the true model parameter and $\operatorname{rank}(\mathbf{X}^*) = r$.

Phase retrieval

$$\mathbf{y}_i = |\langle \mathbf{a}_i, \mathbf{x}^* \rangle|^2 \quad \text{for} \quad 1 \le i \le n,$$

 $\mathbf{x}^* \in \mathbb{R}^p$.

Goal: estimate or recovery X^* (or x^*).

Low-rank matrix trace regression

Theorem: Suppose A satisfies the 3r-RIP with RIP constant δ and

•
$$\|\mathbf{X}^0 - \mathbf{X}^*\|_{\mathbf{F}} \leq C(\delta) \cdot \sigma_r(\mathbf{X}^*)$$

•
$$\sigma_r(\mathbf{X}^*) \geq C'(\delta) \cdot \sqrt{r} \|\mathcal{A}^*(\epsilon)\|.$$

Then iterations generated by RISRO satisfy

$$\|\mathbf{X}^{t+1} - \mathbf{X}^*\|_{\mathbf{F}}^2 \le c_1(\delta) \frac{\|\mathbf{X}^t - \mathbf{X}^*\|^2 \|\mathbf{X}^t - \mathbf{X}^*\|_{\mathbf{F}}^2}{\sigma_r^2(\mathbf{X}^*)} + c_2(\delta)r \|\mathcal{A}^*(\epsilon)\|^2,$$

for all t > 0.

- ★ First term: Decreases quadraticly.
- ★ Second term: Statistical error independent of t.

Anru Zhang ()

Low-rank matrix trace regression - Random Setting

Theorem: If $(\mathbf{A}_i)_{[j,k]} \stackrel{i.i.d.}{\sim} \mathcal{N}(0,1/n)$ and $\epsilon_i \stackrel{i.i.d.}{\sim} \mathcal{N}(0,\sigma^2/n)$. Then when $n \geq C_1(p_1+p_2)r(\frac{\sigma^2}{\sigma_r^2(\mathbf{X}^*)} \vee r\kappa^2)$ and $t_{\text{max}} \geq C_2\log\log(\frac{\sigma_r(\mathbf{X}^*)\sqrt{n}}{\sqrt{r(p_1+p_2)\sigma}}) \vee 1$, the output of RISRO with spectral initialization satisfies

$$\|\mathbf{X}^{t_{\text{max}}} - \mathbf{X}^*\|_{\mathsf{F}}^2 \le c \frac{r(p_1 + p_2)}{n} \sigma^2$$

with high probability.

- ★ Near optimal sample complexity.
- ★ Quadratic convergence.
- ★ Achieve minimax optimal estimation error in statistical sense.

Comparison Simulation $\sigma = 10^{-6}, \kappa = 5$

Summary

- Introduce a new algorithm, RISRO, for rank constrained least squares.
 ⇒ Tuning free, fast and has high-order convergence
- Introduce the recursive importance sketching framework
 Provide a platform to compare different algorithms from a sketching perspective
- Connect RISRO with Riemannian optimization
- ? Give new insights to Alternating Minimization.

Future Work

. . .

• Go beyond RIP, such as matrix completion.

Empirically, we observe quadratic convergence, theory is open!

 \bullet Go beyond ℓ_2 loss. For example ℓ_1 loss in robust low-rank matrix recovery.

Can we say something?

- Random initialization, landscape, etc ...
 Empirically works very well, theory is open!
- Importance sketching in broader applications: tensor, neural network,

Thank you! Questions?

Luo, Y., Huang, W., Li, X., & Zhang, A. R. (2020). Recursive Importance Sketching for Rank Constrained Least Squares: Algorithms and High-order Convergence. arXiv preprint arXiv:2011.08360.