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Problem of Interest

1
min  f(X) := 5 ly — A(X)|5, subject to rank(X)=r,

XeRPLXP2

where y € R", A(X) = [(A1, X), ..., (An, X)]".
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Problem of Interest

1
min  f(X) := 5 ly — A(X)|5, subject to rank(X)=r,

XeRPLXP2

where y € R", A(X) = [(A1, X), ..., (An, X)]".

Motivation: Low rank matrix recovery
@ Observe y, A from y = A(X*) + €. Goal: recover X* from y, A
Specific problems:
@ Matrix regression: A; L N(0,1)
[Candés and Plan, 2011, Recht et al., 2010]
@ Matrix Completion: A; has one entry to be 1, others are 0
[Candés and Tao, 2010]
@ Phase retrieval: A; = a,-a,-T [Shechtman et al., 2015]
@ Rank-one sensing: A; = a,-b,-T [Cai and Zhang, 2015, Chen et al., 2015]

Non-convex and hard to solve!
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Prior Work

o Convex relaxation: minx 3|ly — A(X)|13 + A[|IX][

[Recht et al., 2010, Candés and Plan, 2011]
Theoretical properties computation can be intensive

@ Non-convex methods: enforce rank r constraint

o Factorize X = RLT + Gradient descent or Alternating Minimization on
R € RPLXT L € RP2X" [Ma et al., 2019, Park et al., 2018, Sun and Luo, 2015, Tu et al., 2016,
Wang et al., 2017, Zhao et al., 2015, Zheng and Lafferty, 2015, Jain et al., 2013, Hardt, 2014]...

e Projected gradient descent (Singular value projection (SVP), Iterative Hard
Thresholding (IHT)) [Goldfarb and Ma, 2011, Jain et al., 2010, Tanner and Wei, 2013]...

e Manifold optimization
[Boumal and Absil, 2011, Keshavan et al., 2009, Mishra et al., 2014, Vandereycken, 2013, Wei et al., 2016]
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Prior Work

o Convex relaxation: minx 3|ly — A(X)|13 + A[|IX][

[Recht et al., 2010, Candés and Plan, 2011]
Theoretical properties computation can be intensive

@ Non-convex methods: enforce rank r constraint

o Factorize X = RLT + Gradient descent or Alternating Minimization on
R € RPLXT L € RP2X" [Ma et al., 2019, Park et al., 2018, Sun and Luo, 2015, Tu et al., 2016,
Wang et al., 2017, Zhao et al., 2015, Zheng and Lafferty, 2015, Jain et al., 2013, Hardt, 2014]...

e Projected gradient descent (Singular value projection (SVP), Iterative Hard
Thresholding (IHT)) [Goldfarb and Ma, 2011, Jain et al., 2010, Tanner and Wei, 2013]...

e Manifold optimization
[Boumal and Absil, 2011, Keshavan et al., 2009, Mishra et al., 2014, Vandereycken, 2013, Wei et al., 2016]

@ Most of existing algorithms

e require careful tuning or
e have a convergence rate no faster than linear.

— Can we do better?
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Our Algorithm: RISRO

Recursive Importance Sketching algorithm for Rank constrained least
squares Optimization (RISRO).

Advantages
@ Tuning free

@ High-order convergence guarantees under proper assumptions
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RISRO-Procedure

@ Input y, A, and initialization X° with (economic) SVD U°E°VOT
Q Fort=0,1,...
B Perform importance sketching on A.

B Solve a dimension reduced least squares.

B Update sketching matrices.
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RISRO-Procedure

@ Input y, A, and initialization X° with (economic) SVD U°E°VOT
Q Fort=0,1,...
B Perform importance sketching on A. Construct importance covariates
Af = UTTAVE AP = UTAVE AP .= UTTA VY

A wHTAVE UHTAVE
L

l Sketching in RISRO E m
: R —
i wHravt ==

B Solve a dimension reduced least squares.

B Update sketching matrices.
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RISRO-Procedure

@ Input y, A, and initialization X° with (economic) SVD U°E°VOT
Q Fort=0,1,...
B Perform importance sketching on A. Construct importance covariates
AP = UTTA VI AP = UTAVE AP = UTTA VY
A (UHTAVE (UOTAVE
L

l Sketching in RISRO E m
; | )

—_——
; T

X whHravt ==

B Solve a dimension reduced least squares.

n
2
(B, DI, D5™) = argmin Y (yi — (AP, B) — (A, D1) — (A7, D]))
B,D:,D; {5

B Update sketching matrices.
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RISRO-Procedure

@ Input y, A, and initialization X° with (economic) SVD U°E°VOT
Q Fort=0,1,...
B Perform importance sketching on A. Construct importance covariates
AP = UTTA VI AP = UTAVE AP = UTTA VY
A WAVt U AVE
L

+=ry Sketching in RISRO E E.EFH
; | )

—_——

wHravt ==

B Solve a dimension reduced least squares.

n
2
(B, DI, D5™) = argmin Y (yi — (AP, B) — (A, D1) — (A7, D]))
B,D:,D; {5

B Update sketching matrices. Let X|/' = (U'B"*! + U D),
XUt = (VBT + Vi D). Update U = QR(X] ™), VI = QR(X{™).
B (Optional) X! = X§#t (B#1)T {17
QR(-) is the @ part in QR decomposition and ()T is the Moore-Penrose inverse
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RISRO-Intuition

Suppose y; = (A;, )_(> + € where X is a rank r target matrix. Rewritten
yi = (AB UTTXVE) 4 (AP U XV 4+ (AP UTTXVY) + €,

where €f = (U{TA VY ULTXVY) + &
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RISRO-Intuition

Suppose y; = (A;, )_(> + € where X is a rank r target matrix. Rewritten
yi = (AB UTTXVE) 4 (AP U XV 4+ (AP UTTXVY) + €,
where €f = (U{TA VY ULTXVY) + &
If ¢ = 0. Then
Bt =U'TXV!, D' =U{"XV, Dt =U""XV]
is a solution of the least squares. Moreover if B! is invertible

Xt = Xt (Bt+1)—1 XET = X

In general €t # 0, but we hope X! — X.
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Importance Sketching in RISRO

Sketching: do dimension reduction to speed up the computation

(UHTAYE U)TAVE

ﬁ Sketching in RISRO

% KN

i WHTAV %

@ Comparison of Importance Sketching and Randomized Sketching

Importance Sketching

Randomized
[Mahoney, 2011, Woodruff, 2014]

Sketching Matrix

(with supervision)

Deterministic, U*, V*

Random

Dimension reduction

Reduce p, hold n

Reduce n, hold p

Statistical efficiency

High

Low
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Sketching Interpretations for algorithms in literature
@ Alternating Minimization (Alter Mini) [Jain et al., 2013, Zhao et al., 2015]
Vit = arg minz (y,- — (A, UtVT>)2 = arg minz <y,- — (UtTA,-,VT>>2,

VERP2XT 54 VERP2XT 4

Vt+1 _ QR(\”}Hl)

Af wHT4;

2i5 Sketching in Alter Mini @m
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Sketching Interpretations for algorithms in literature

@ Alternating Minimization (Alter Mini) [Jain et al., 2013, Zhao et al., 2015]
i+l . . Ty )2 . : tT T
V™ = arg mmZ (y,- — (A;,U'V )) = arg mmZ <y,- —(U"" A,V ))

VERP2XT 54 VERP2XT 54

Vt+l _ QR(\”}tﬂ)

2
)

A; (Ut)TAi

—Sketching in Alter Mini @m

@ Rank 2r iterative least squares (R2RILS) for matrix completion
[Bauch and Nadler, 2020]

min 3 {(U*NT LMV x) [u]}2 ,

MERPLX" NERP2XT
’ (i.))eQ

Q is the observed entry indices.
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Sketching Interpretations for algorithms in literature

@ Alternating Minimization (Alter Mini) [Jain et al., 2013, Zhao et al., 2015]
N n 2 n 2
Vi = arg minz (y,- — (A, UtVT>) = arg minz <y,- — (UtTA,-,VT>> ,

VERP2XT 54 VERP2XT 54

Vt+l _ QR(\”}tﬂ)
A; (Ut)TAi

gHsketching in Alter Mini ﬁm

@ Rank 2r iterative least squares (R2RILS) for matrix completion
[Bauch and Nadler, 2020]

3 {(U‘NT MV - )

(i)

} A Z ( 'J]f tTAiijT>7<M7Aith>>2

[7.41 (hea

A: (Ut)TAi

14
* Sketching in R2RILS ;:g ]
‘ AViE=E
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Sketching Interpretations for algorithms in literature

wH A
wHTAVt UHTAVE Ai - Mint @m

- in Alte
0 etch\“g n
E m Sketching in RISRO % V UHT 4
— H
% wHTavt | _ Sketchipg : ﬁ w
— Ngin Ry =
e RiLs 4,y %

@ Alter Mini: Miss one set of covariates = large iteration error

@ R2RILS: Double core sketch = Rank .defICIency n the least Squa.res
Hard in theory and implementation

%* RISRO: resolve both issues = High-order convergence!
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RISRO Convergence Analysis

Let X be a rank r and . Assume
o A satisfies 3r-restricted isometry property (RIP) with RIP constant §
@ Initialization condition: ||X® — X||g < C(8)c,(X)
@ Small residual (gradient) condition: ||.A*(€)||r < C'(8)o,(X).

o,(X) is the r-th largest singular value of X. A*(b) := >, b;A; is the adjoint
operator of A.
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RISRO Convergence Analysis

Let X be a rank r stationary point and € ==y — A(X).

Theorem 1: Under the assumptions above, X* generated by RISRO converges
Q-linearly to X:

_ 3 _
X7 = X < ZIXE =K, V>0,
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RISRO Convergence Analysis

Let X be a rank r and

Theorem 1: Under the assumptions above, X* generated by RISRO converges
Q-linearly to X:

_ 3 _
X7 = X < ZIXE =K, V>0,

S a(8)||Xt — X2 - . - .
e = aa (LR R MY G S (R PR CTD B TEY:
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RISRO Convergence Analysis

Let X be a rank r and

Theorem 1: Under the assumptions above, X* generated by RISRO converges
Q-linearly to X:

_ 3 _
X7 = X < ZIXE =K, V>0,

S O|IXt = X||? S . S .
xert i < SOIXCXIE (xR 4 a0 @ X - Kl + 14 QIF) . Ve
a7 (X)
If , then {X*} converges quadratically to X as
_ Ve (0)| Xt — X|[2
||Xt+17X||F§ Cl( )” Y HF7 V> 0.
a(X)
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RISRO Convergence Analysis

% Quadratic-linear convergence

a(@)X* - X|?

Xt+1_x 2 < _
X < A

o when || X' — ):(|||: > || A*(€)||g = quadratic convergence
e when || X' — X||¢ < c||A*(€)||r = reduce to linear convergence

€ | = Longer period of quadratic convergence.
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RISRO Convergence Analysis

% Quadratic-linear convergence

a(@)X* - X|?

Xt+1_x 2 < _
X < A

o when || X' — ):(|||: > || A*(€)||g = quadratic convergence
e when || X' — X||¢ < c||A*(€)||r = reduce to linear convergence

€ | = Longer period of quadratic convergence.

* é=0 = y=AX) = matrix sensing [Recht et al., 2010]
RISRO achieves quadratic convergence

* A:RPXP2 — R” satisfies the r-restricted isometry property with RIP
constant ¢ € [0, 1) if

(1-9)IZlF < IA@)5 < (1 +9)I1Z|Iz
for all Z of rank at most r. [Candes, 2008, Recht et al., 2010]
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Simulation

yi= (A, X*)+e for1<i<n A "% N(0,1) and & "5 N(0,02). X* € RP*P
with p = 100, r = 3, k(X*) = 1 and X% = SVD, (A*(y)).

@ (Quadratic-linear) n = 5pr, o = 10% for e € {0, -1, -2, —14}

= 1e+00- 4, 1e+04 4
i % £ *,
é 1e-04 4 g 1e+00 a
s — -14
T 1e-08 S 1e-04 e -2
* g 15
I te-12 © 1e-08 ‘ 0
= 0 10 20 0 10 20
Iteration Number Iteration Number
@ (Quadratic) n/(pr) € {4,5,6,7,8}, 0 =0
1e+00-4 '

*:u‘ S ™,y & n

X 1e-04- A pr

5 )

= 4

= 1e-08- S =5

x !ﬁ A 6

¢ le-12: O, T7

= 8

= S

o 1 2 3 4 5

Iteration Number
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Vs. Other Algorithms

Suppose p1 = po = p and n > pr. Under similar assumptions as in
Theorem 1:

GD PGD (SVP / IHT) | Alter Mini | RISRO (this work)
Per iteration
e O(np?r) O(np?) O(np*r?) O(np*r?)
Tuning Yes Yes No No
Convergence Linear Linear Linear Quadratic-(linear)

% Improve upon Alter Mini for free
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Comparison Simulation o = 0

1e+00
L L
%] X 0 1e-04-
= =
T | o
2 1e-08- i 2 1608
© ©
[0} 1 /75y [0}
T je12- \ @ T e q2-
i >< b U U 0 . i
0 10 20 30 40 50 0
Iteration Number
k=1
16+00- 16+00-4
m m
@ 1e-04 y 0 1e-04-
= =
e X s
Ste-08- | %, 2 e-08-
= =
5] & 5]
° X *«7&% °
C je12- | & T e 1o
x
0 10 20 30 40 50 0
Iteration Number
x = 500
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> RISRO (this work)
& Alter Mini
A GD
SVP
NNM
\
2 3 4 5
Runtime (s)
Algorithm
> RISRO (this work)
& Alter Mini
GD
SVP
NNM
\
‘X .
2 3 4 5
Runtime (s)
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Any connection of RISRO to existing optimization algorithms?
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Connection to Riemannian Manifold Optimization

[teration t of RISRO:

@ Perform importance sketching.

@ Perform a dimension reduced least squares.

@ Update sketching matrices and Xt+1.
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Connection to Riemannian Manifold Optimization

[teration t of RISRO:

@ Perform importance sketching.

@ Perform a dimension reduced least squares.

— Implicitly solves " Fisher Scoring” or " Riemannian Gauss-Newton”
equation in Riemannian optimization on fixed rank matrices.

@ Update sketching matrices and Xt+1.

— Perform a type of retraction in Riemannian optimization literature

RISRO

Non-linear
Riemannian Least square

Fisher Scoring
Gauss-Newton
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Riemannian Manifold Optimization

@ Target: optimize a function f defined on a Riemannian manifold M.
[Absil et al., 2009]

@ Common Riemannian manifolds:
a smooth subset of R” 4+ a Riemannian metric.

Anru Zhang () Importance Sketching
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Riemannian Manifold Optimization

@ Target: optimize a function f defined on a Riemannian manifold M.
[Absil et al., 2009]

@ Common Riemannian manifolds:
a smooth subset of R” 4+ a Riemannian metric.

o M, ={XecRP*P: rank(X) = r}
Riemannian metric: Euclidean inner product, (U, V) = trace(U V)
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Retraction

o lterative algorithm: x't1 = xt 4+ ¢,

+

Manifold optimization: x!*1 may not lie in the manifold

Solution: retraction!
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Retraction

@ lterative algorithm: x'™! = xt 4 ¢.
Manifold optimization: xt+1 may not lie in the manifold

Solution: retraction!

@ Retraction: a smooth map that brings the vector in the tangent space back
to the manifold. Denote T,M as the tangent space at x

[Absil et al., 2009, Section 4.1]

R:MXTM—= M, xx&— RJ(§) e M.
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Retraction

o lterative algorithm: x't1 = xt 4+ ¢,
Manifold optimization: x!*1 may not lie in the manifold

Solution: retraction!
@ Retraction: a smooth map that brings the vector in the tangent space back
to the manifold. Denote T,.M as the tangent space at x

% Let n' be the update direction such that X* + * has the following
representation,

Bt+1 Dt+1T
Xt 4t =[Ut UL [Diﬂ 20 } vt vir.
* Xt 4t = X!*t1. Retraction is:
t+1 t t t Bt+1 D£+1T t t1T
X = R() = [0 UL By s ety i IV VA

% 7' solves the Fisher Scoring or Riemannian Gauss-Newton direction.
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Connection to Riemannian Optimization

Recall £(X) := L ly — A(X)][3.
@ Riemannian Gradient: grad f(X)

@ Riemannian Hessian: Hessf(X)

@ Riemannian Newton direction Newton

—gradf(X) = HCSSf(X) [nNewton]
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Connection to Riemannian Optimization

Recall £(X) := 1 [ly — A(X)][3.
@ Riemannian Gradient: grad f(X) = Pr, (A*(A(X) —y)).
Py (+) is the orthogonal projector onto the tangent space at X.

@ Riemannian Hessian: Hessf(X) [n] = Pr, (A*(A(n))) + h(y —

h(-) here has complex dependence on X, 7.

@ Riemannian Newton direction Newton
—gradf(X) = Hessf (X)[Newton]
<> 7gradf(X) = PTX (A*(A(UNewton))) + h(y

Anru Zhang () Importance Sketching
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Connection to Riemannian Optimization

Recall £(X) := 1|y — AX)[2.

Riemannian Gradient: grad f(X) = Pr, (A*(A(X) —y)).
Py (+) is the orthogonal projector onto the tangent space at X.

Riemannian Hessian: Hessf(X) [n] = Pr, (A*(A(n))) + h(y — A(X)).

h(-) here has complex dependence on X, 7.

Riemannian Newton direction 7Newton
—gradf(X) = Hessf (X)[/)Newton]

— —gradf(X) = Pr, (A*(A(NNewton))) + h(y — A(X))

t+1 t+1T
Update in RISRO: X!+ 7' =[U* UY] {gtﬂ D20
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Connection to Riemannian Optimization

Recall £(X) =} [ly — A(X)]>.

Riemannian Gradient: grad f(X) = Pr, (A*(A(X) —y)).

Py (+) is the orthogonal projector onto the tangent space at X.

Riemannian Hessian: Hessf(X) [n] = Pr (A*(A(n))) + h(y — A(X)).

h(-) here has complex dependence on X, 7.

Riemannian Newton direction 7Newton
—gradf(X) = Hessf (X)[/)Newton]

— —gradf(X) = Pr, (A*(A(NNewton))) + h(y — A(X))

t+1 t+1T
Update in RISRO: X!+ 7' =[U* UY] {gtﬂ D20

Theorem 2: n* solves

—gradf(X‘) = Pr,, (A"(A(n)))-

Jve v,

h(y — A(X)) is just thrown away!
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Connection of RISRO and Riemannian optimization

Suppose y = A(X) + €, where X is a fixed matrix and ¢; i N(0,02). Then for
any 7,

{E(Hessf (X)[1])} [x=x: = P, (A"(A(n))) -
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Connection of RISRO and Riemannian optimization

Suppose y = A(X) + €, where X is a fixed matrix and ¢; i N(0,02). Then for
any 7,

{E(Hessf (X)[1])} [x=x: = P, (A"(A(n))) -

By Theorem 2, n* solves

—gradf (X*) = {E(Hessf (X)[n])} [x=x:- J
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Connection of RISRO and Riemannian optimization

Suppose y = A(X) + €, where X is a fixed matrix and ¢; i N(0,02). Then for

any 17,

{E(Hessf (X)[1])} [x=x: = P, (A"(A(n))) -

By Theorem 2, n* solves

—gradf (X*) = {E(Hessf (X)[n])} [x=x:-

This algorithm is called Fisher Scoring in literature [Lange, 2010].

RISRO

Non-linear

i i Leastsquare _, .
Riemannian ~_Leastsquare Fisher Scoring
Gauss-Newton
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Applications to Statistics and Machine Learning

=] & = E E DA
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Applications to Statistics and Machine Learning

@ Low-rank matrix trace regression model:
yi = (A, X*) +€, forl<i<n,

X* € RP1*P2 js the true model parameter and rank(X*) = r.

@ Phase retrieval
yi = ](a,-,x*>\2 for 1<i<n,

x* € RP,

Goal: estimate or recovery X* (or x*).
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Low-rank matrix trace regression

Theorem: Suppose A satisfies the 3r-RIP with RIP constant ¢ and
o [IX0 = X"l < C(9) - o(X")
 0,(X*) = C'(6) - VrllA*(e)ll.

Then iterations generated by RISRO satisfy

Xt — X* 2 Xt — X* 2
||Xt+1 _X*H'2: Scl(é)” || || ||F

o2(X7) ’ ’
for all t > 0. )
% First term: Decreases quadraticly.
* . Statistical error independent of t.
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Low-rank matrix trace regression — Random Setting

Theorem: If (A;)[j,4 FEg N(0,1/n) and ¢; R N(0,02%/n). Then when
n> C(p1+ p2)r(03‘(’7;*) V ri?) and tmax > G Ioglog(%) V 1, the output

of RISRO with spectral initialization satisfies

||xtmax_x*||% S Cr(pl f p2)0,2
n

with high probability.

% Near optimal sample complexity.
% Quadratic convergence.

% Achieve minimax optimal estimation error in statistical sense.
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Comparison Simulation 0 = 107% k=5

Relative RMSE

1e-01-

1e-03-

1e-05-

10 20 30 40
Iteration Number
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10-01] OO =0 S O
Algorithm
o3l » RISRO
1e-03 & Alter Mini
~ GD
SVP
16-05- © NNM
0

Runtime (s)
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Summary

@ Introduce a new algorithm, RISRO, for rank constrained least squares.
= Tuning free, fast and has high-order convergence

@ Introduce the recursive importance sketching framework
= Provide a platform to compare different algorithms from a sketching
perspective

Connect RISRO with Riemannian optimization

@ 7 Give new insights to Alternating Minimization.
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Future Work

@ Go beyond RIP, such as matrix completion.

Empirically, we observe quadratic convergence, theory is open!
@ Go beyond /5 loss. For example ¢; loss in robust low-rank matrix

recovery.

Can we say something?

@ Random initialization, landscape, etc ...
Empirically works very well, theory is open!
@ Importance sketching in broader applications: tensor, neural network,

Anru Zhang ()
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Thank you! Questions?
Luo, Y., Huang, W., Li, X., & Zhang, A. R. (2020). Recursive Importance Sketching for

Rank Constrained Least Squares: Algorithms and High-order Convergence. arXiv
preprint arXiv:2011.08360.
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