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In Memory of Larry

Figure: Anru’s PhD Thesis Defense, April, 2015
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My Recent Research

• Tensor Data Analysis

• Singular Subspace Analysis, PCA

• Human Microbiome Studies 10-100 trillian 
microbial cells

3.3 million 
microbial genes

37 trillion 
human cells

23,000 
human genes

>10,000 
microbial species

99.9% of 
human DNA 
is the same 80-90% of the 

gut microbiome 
are different
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Introduction

Semi-supervised Inference

• Semi-supervised settings often appear in machine learning and
statistics.

• Possible situations: labels are more difficult or expensive to acquire
than unlabeled data.

• Example:
I Survey sampling
I Electronic health record
I Imaging classification
I ...
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Introduction

An “Assumption Lean” Framework

• Assume Y is label, X = (X1, . . . ,Xp) is p-dimensional covariate,

(Y ,X1, . . . ,Xp) ∼ P = P(dy, dx1, . . . , dxp).

No specific assumption on the relationship between Y and X.

• Observations:
→ n “labeled” samples from joint distribution P,

[Y,X] =
{
Yk,Xk1, . . . ,Xkp

}n

k=1
;

→ m “unlabeled” samples from marginal distribution PX,

Xadd =
{
Xk1, . . . ,Xkp

}n+m

k=n+1
.

• Goal: statistical inference for θ = EY.
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Introduction

Motivations

• Consensus of Homeless

Random	  Unlabeled	  Samples

Random	  Labeled	  Samples n=265

m=1545

Y X	  (p=7)

Pre-‐selected	  Labeled	  Samples 244

• Electronic Health Records: prevalence of certain disease

Picture source: Jensen PB, Jensen LJ, and Brunak S. Nature Reviews, 2012
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Methods

m = ∞: Ideal Semi-Supervised Inference

• m = ∞, infinitely many unlabeled samples.

• Baseline estimator: sample mean Ȳ.

• Least square estimator:

θ̂LS = Ȳ − β̂>(2)(X̄ − µ).

I µ = EX is known;
I Ȳ = 1

n
∑n

k=1 Yk, X̄ = 1
n
∑n

k=1 Xk;

I β̂ =

(
~X
>~X

)−1
~X
>

Y is the least square estimator, β̂ = [β̂1 β̂
>
(2)]
>;

~X =


1 X11 · · · X1p
...

...
...

1 Xn1 · · · Xnp


is the prediction matrix with intercepts;
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Methods

m < ∞: Ordinary Semi-Supervised Inference

• m < ∞: finitely many unlabeled samples; PX is partially known.

• Semi-supervised least squared estimator

θ̂SSLS = Ȳ − β̂>(2)(X̄ − µ̂), µ̂ =
1

n + m

n+m∑
k=1

Xk.

• When m = 0, i.e., no unlabeled samples,

θ̂SSLS = Ȳ;

When m = ∞, i.e., infinitely many unlabeled samples,

θ̂SSLS = θ̂LS.
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Methods

Interpretation: An Assumption-Lean Framework

Define
• population slopes: β = argminγ E(Y − ~X>γ)2;

• linear deviations δ = Y − β>~X, τ2 = Eδ2.

Picture source: Buja, Berk, Brown, George, Pitkin, Traskin, Zhao, and Zhang, Statistical Science, 2017.
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Methods

Interpretation: An Assumption-Lean Framework

• Facts:

θ =β1 + µ>β(2), θ̂LS = β̂1 + µ>β̂(2), θ̂SSLS = β̂1 + µ̂>β̂(2).

• Thus, θ̂LS and θ̂SSLS can be seen as “plug-in” estimators:

β = argmin
γ
E(Y − ~X>γ)2, β̂ = argmin

γ

n∑
k=1

(Yk − ~Xkγ)2,

µ = EX, µ̂ =
1

n + m

n+m∑
k=1

Xk.
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Theoretical Properties

Theory: `2 risks

• Recall
I population slopes β = argminγ E(Y − ~X>γ)2, β = [β1β

>
(2)]
>;

I Linear deviations δ = Y − β>~X;
I τ2 = Eδ2, µ = EX, Σ = Cov(X).

Proposition (`2 risk of Ȳ)

nE(Ȳ − θ)2 = τ2 + β>(2)Σβ(2).
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Theoretical Properties

Theory: `2 risks

Theorem (`2 risk of θ̂LS)

Suppose we observe n labeled samples and know PX, p = o(n1/2), θ̂1
LS is a

truncation version of θ̂LS. Under finite moment conditions, we have

nE
(
θ̂1

LS − θ
)2

= τ2 + sn, sn = O(p2/n).

Theorem (`2 risk of θ̂SSLS)

Suppose we observe n labeled samples {Yk,Xk}
n
k=1 and m unlabeled

samples {Xk}
n+m
k=n+1, p = o(n1/2), θ̂1

SSLS is a truncation version of θ̂SSLS. Under
finite moment conditions, we have

nE
(
θ̂1

SSLS − θ
)2

= τ2 +
n

n + m
β>(2)Σβ(2) + sn,m, sn,m = O(p2/n).
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Theoretical Properties

Remark: `2 Risk Theory

nE
(
Ȳ − θ

)2
= τ2 + β>(2)Σβ(2),

nE
(
θ̂1

LS − θ
)2

= τ2+O(p2/n),

nE
(
θ̂1

SSLS − θ
)2

= τ2 +
n

n + m
β>(2)Σβ(2)+O(p2/n).

Remark

•

E
(
θ̂1

SSLS − θ
)2
≈

n
n + m

E(Ȳ − θ)2 +
m

n + m
E

(
θ̂1

LS − θ
)2
.

• θ̂1
LS, θ̂

1
SSLS are asymptotically better than Ȳ in `2 risk,

if β>(2)Σβ(2) > 0, i.e., E(Y |X) is significantly correlated with X.
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Theory

Asymptotic Distribution of θ̂LS

Theorem (Fixed p growing n asymptotics of θ̂LS)

Assume (Y ,X) ∼ P. P is fixed, has finite and non-degenerate second
moments, τ2 > 0. Based on n labeled samples, we have

θ̂LS − θ

τ/
√

n
d
→ N(0, 1), MSE/τ2 d

→ 1 as n→ ∞,

where MSE :=
∑n

i=1(Yi − ~X>i β̂)2

n − p − 1
, τ2 = E(Y − ~X>β)2.

• Essen-Berry-type CLT: let the cdf of θ̂LS−θ

τ/
√

n
be Fn,

→ |Fn(x) − Φ(x)| ≤ Cn−1/4;

• Under p = pn = o(
√

n) and other moment conditions,
→ asymptotic results still hold.
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Theory

Asymptotic Distribution of θ̂SSLS

Theorem (Fixed p growing n Asymptotics of θ̂SSLS)

Assume (Y ,X) ∼ P, P is fixed, P has finite and non-degenerate second
moments, τ2 > 0. Based on n labeled samples and m unlabeled samples,

θ̂SSLS − θ

ν/
√

n
d
→ N(0, 1), ν̂/ν2 d

→ 1, as n→ ∞,

where ν̂ =
m

m + n
MSE +

n
m + n

σ̂2
Y , ν2 = τ2 +

n
n + m

β>(2)Σβ(2),

MSE =
1

n − p − 1

n∑
k=1

(Yi − ~X>k β̂)2, σ̂2
Y =

1
n − 1

n∑
k=1

(Yi − Ȳ)2.
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Theory

Inference for θ

• When p = pn = o(
√

n), (1 − α)-level confidence interval for θ:

(Ideal semi-supervised)

θ̂LS ± z1−α/2

√
MSE

n

,
(Ordinary semi-supervised)

θ̂SSLS ± z1−α/2

√
m

m+n MSE + n
m+n σ̂

2
Y

n

.
• Traditional z-interval,Ȳ − z1−α/2

√
σ̂2

Y

n
, Ȳ + z1−α/2

√
σ̂2

Y

n


• Since

MSE
d
→ τ2 < σ̂2

Y
d
→ τ2 + β>(2)Σβ(2).

LS-confidence intervals are asymptotically shorter!
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Semiparametric Efficient Estimator

Further Improvement

• θ̂LS, θ̂SSLS explore linear relationship between Y and X.

• Further improvement: add non-linear covariates

X•k =
(
Xk1, . . . ,Xkp, g1(Xk), . . . , gq(Xk)

)
.

Semi-supervised least squared estimator:

θ̂•LS = Ȳ − (β̂•(2))
>(X̄• − µ•), β̂• =

(
(~X
•
)>~X

•)−1
(~X
•
)>Y.

θ̂•SSLS = Ȳ − (β̂•(2))
>(X̄• − µ̂•), µ̂• =

1
n + m

n+m∑
k=1

~X•k .

• Let q grows slowly (q = o(n1/2)), one can establish semiparametric
efficiency and oracle optimality for θ̂•LS and θ̂•SSLS.
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Summary

Summary

• We introduced an “assumption lean” framework for semi-supervised
inference and focus on θ = EY.

• Ideal semi-supervised setting: θ̂LS = Ȳ − β̂>(2)(X − µ).
Ordinary semi-supervised setting: θ̂SSLS = Ȳ − β̂>(2)(X − µ̂)

• Further improvement to semiparametric efficient estimators θ̂•LS, θ̂
•
SSLS.

• Future Works:
I p significantly grows beyond o

(
n1/2

)
→ high-dimensional setting.

I Other problems in semi-supervised settings
→ classification, regression, covariance estimation, PCA, CNN, ...
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